

Chapter 1. Making measurements

1.1 Physical Quantities

Why do we need physics quantities?

What is a physical quantity?

Name **three** common physical quantities.

How do we express physical quantities? e.g. the height of your desk.

1.2 Measurements

1.2.1 Unit

- SI Unit (French: Système International d'Unités, English: International System of Units)

7 Basic quantities and their SI Units:

7 Base Quantity	SI Unit	
	Name	Symbol
Mass		
Length		
Time		
Electric current		
Temperature		
Luminous intensity		
Amount of substance		

Exercise:

1.a Guess the mass of an apple, an adult, an airplane, the Earth, express them in SI unit.

1.b Guess the size of an atom, the height of an adult, a school building, the circumference of the Earth, express them in SI unit.

- Powers of ten shorthand — **standard notation**

Example:

$$9000 = 9 \times 10 \times 10 \times 10 = 9 \times 10^3$$

$$900 = 9 \times 10 \times 10 = 9 \times (\quad)$$

$$90 = 9 \times 10 = 9 \times 10^1$$

$$9 = 9 \times 1 = 9 \times (\quad)$$

$$0.9 = 9/10 = 9 \times 10^{-1}$$

$$0.09 = 9/100 = 9 \times (\quad)$$

Exercise:1.c:

$$1000 =$$

$$10 =$$

$$1 =$$

$$0.000005 =$$

Exercise: 1.d

Rewrite your answer in Exercise 1.a and 1.b with standard notation.

- Prefix

Take meter as an example

Definition of meter:

Submultiples:

1 nanometer(nm) = m

1 micrometer() = m

1 millimeter() = m

1 centimeter() = m

1 decimeter() = m

Multiples:

1 kilometer() = m

1 gigameter() = m

Exercise: 1.e

1 kilogram(kg) = gram(g)

1mA = A

1 millisecond (ms) = s

Generally,

killo(k) corresponds to:

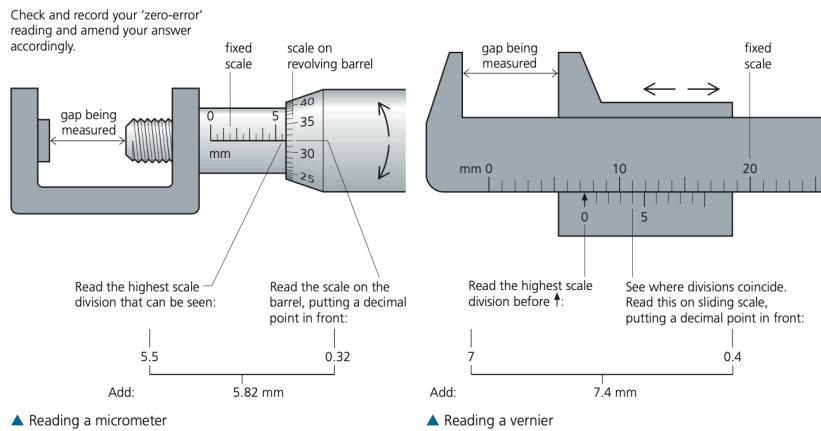
mega(M) corresponds to:

giga(G) corresponds to:

milli(m) corresponds to:

micro(μ) corresponds to:

1.2.2 Measuring length


Try to measure the length of a wire yourself, answer following questions.

What do you have to consider before measuring? How do you do the measurement? How do you read the result? How about measuring the thickness of a sheet of paper? How do you measure curved lines?

Measurement techniques:

- 1.
- 2.

More precise measurement: micrometer & vernier

1.2.3 Measuring area

Exercise: 1.f

$$1 \text{ dm}^2 = \text{ m}^2$$

$$1 \text{ cm}^2 = \text{ m}^2$$

Exercise: 1.g Measure the area of the front page of your textbook.

1.2.4 Measuring volumes

Exercise: 1.h

$$1 \text{ dm}^3 = \text{ m}^3$$

$$1 \text{ cm}^3 = \text{ m}^3$$

$$1 \text{ liter(l)} = 1(\quad)$$

$$1 \text{ milliliter(ml)} = 1(\quad) = \text{ m}^3$$

I. Liquid:

tool:

meniscus: (write down definition)

Read the result: point the position where you should put your eye
on in order to read the result correctly.

Choice of cylinder:

Exercise: 1.i

Volume to be measured is around 300ml, which of following cylinder's capacity is most suitable?

A. 100 cm^3 B. 250 cm^3 C. 500 cm^3 D. 1000 cm^3

II. Regular shape:

Volume of a cuboid =

Volume of a cube =

Volume of a sphere =

Volume of a cylinder =

III. Irregular shape:

technique: displacement.

Explain in your own words, how to use displacement to measure a rock. What is the **key** step?

1.2.5 Measuring time

tool: analogue clock; digital clock/stopwatch

When to use which?

Measuring short intervals of time

e.g. measure the period of a pendulum.

1.3 Density

1.3.1 Mass:

Unit of mass:

Mass is not weight.

Weight:

Tool to measure mass:

Why can iceberg float on the surface of water? Do you know about Dead Sea? Why can people easily float on it?

1.3.2 Density:

Unit of density:

Density of water:

Values of density:

	Material	Density /kg/m ³
Gases	air	1.29
	hydrogen	0.09
	helium	0.18
	carbon dioxide	1.98
Liquids	water	1000
	alcohol (ethanol)	790
	mercury	13 600
Solids	ice	920
	wood	400–1200
	Polyethene	910–970
	glass	2500–4200
	steel	7500–8100
	lead	11 340
	silver	10 500
	gold	19 300

Table 1.3: Densities of some substances. For gases, these are given at a temperature of 0°C and a pressure of 1.0×10^5 Pa.

Calculating density — density of earth:

The Earth has a mass of 6×10^{24} kg and a radius of about 6400 km.

1.3.3 Finding the density of a liquid

How to use balance to measure the mass of liquid?